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Role of cracks in the creep deformation 
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A discussion is presented of the effect of cracks formed during the creep deformation of 
polycrystalline ceramics on the rate of creep deformation. Four distinct regions of the 
creep curve are identified. In region I, creep is controlled by the basic creep mechanism 
without cracks. Creep in region II is the combined effect of elastic creep by crack growth 
due to time-dependent changes in elastic properties and crack-enhanced creep described 
by Weertman. In region II I, in which the cracks have reached their final size, the rate of 
creep is governed by the sole effect of crack-enhanced creep. Region IV, not discussed in 
detail, is represented by accelerated creep due to crack coalescence prior to failure. The 
apparent stress exponent of crack-enhanced creep is shown to be governed by the value of 
the stress exponent of the basic creep mechanism as well as the stress dependence of the 
number of cracks formed per unit area or volume. The dependence of crack density on 
grain size also modifies the grain-size dependence of Nabarro-Herring and Cable creep. 
Depending on the specific mechanism of crack growth, region II creep can exhibit an 
apparent activation energy which can differ from the corresponding values for region I 
and III creep. Detailed microstructural information on crack size, crack density and other 
relevant variables is required for the quantitative analysis of the creep kinetics of poly- 
crystalline ceramics subject to crack formation. 

1. Introduction 
The mechanisms of creep deformation of poly- 
crystalline brittle ceramics by volume [1,2] or 
grain-boundary diffusion [3] or dislocation 
motion [4, 5] are generally well accepted. Dif- 
fusional processes, dominant at low values of  stress 
and temperature give rise to viscous (or linear) 
creep, for which the rate of creep depends linearly 
on the value of stress. In contrast, dislocation 
creep, generally dominant in brittle ceramics at 
high values of  stress and temperature, exhibits 
non-linear behaviour for which the creep rate is 
proportional to the stress raised to an exponent, 
n > l .  

Extensive experimental observations of  the 
creep kinetics for a wide variety of  ceramic 
materials, however, indicate the existence of non- 
linear creep over ranges of stress and temperature 
at which dislocation-controlled creep behaviour 
should not be the dominant mechanism [6-11,  
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34]. In an earlier study such non-linear creep 
was attributed to non-linear grain-boundary 
sliding [12]. More recently, Blumenthal et al. 

[13] showed that for grain-boundary sliding 
accompanied by grain-boundary cracking, the 
stress exponent n = 2. Such non-linear creep is 
frequently observed in ceramics with a large grain 
size or with a residual pore phase [6, 9]. Crosby 
and Evans [14] suggested, therefore, that cracks 
play an active role in promoting non-linear creep 
in ceramic materials. 

The purpose of this paper is to present a more 
quantitative discussion of the effect of cracks on 
the creep rate of  brittle ceramics. At least two 
such effects exist, which can take place either 
separately or concurrently. The first effect, 
referred to here as crack-accelerated or crack- 
enhanced creep, treated theoretically by Weertman 
[15], results from the local stress field near the 
cracks and the associated transfer of stress to the 
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material adjacent to the cracks. The second effect 
arises from the growth of  existing cracks, which 
leads to "elastic" creep due to time-dependent 
decrease in elastic moduli, recently proposed by the 
present authors [16]. Analyses of these two separate 
effects wiU be presented for two crack geometries. 
A discussion is then presented on how these effects 
influence the creep curve, the stress exponent of 
the creep rate, the apparent activation energy, the 
grain-size dependency and the stress state. 

2. Analysis 
2.1. General information 
Weertman [15] derived expressions for crack- 
enhanced creep for a two-dimensional model 
consisting of a uniaxially stressed plate with 
through cracks. The present writers [17] obtained 
expressions for the rate of elastic creep of a 
three-dimensional, uni-axiaUy stressed solid, with 
penny-shaped cracks. The expressions for these 
two creep mechanisms will not be re-derived, but 
restated only, without further discussion. Since 
crack-enhanced and elastic creep can occur simul- 
taneously, expressions for the rate of elastic creep 
of a two-dimensional solid with non-interacting 
cracks will be derived. Also an approximate (but 
possibly exact) solution of crack-enhanced creep 
for dilute concentrations of penny-shaped non- 
interacting cracks will be given. 

For both the two- and three-dimensional solid 
the cracks are assumed to be oriented such that 
the plane of the cracks is perpendicular to a uni- 
axially applied stress. Other stress states can be 
considered by the use of the appropriate expres- 
sions for the effect of cracks on elastic moduli 
[18-20]. For simplicity, for purposes of the 
analysis all cracks are assumed to be of uniform 
size. Variations in crack size can be taken into 
account by the use of appropriate distribution 
functions. In fact, as will be demonstrated, dis- 
tributions in crack size need to be assumed to 
explain a number of creep phenomena in brittle 
ceramics. The absence of crack interactions will 
be assumed throughout. Finally, in order to fully 
concentrate on the effect of cracks on creep 
behaviour and to avoid a possible bias of the 
results obtained, no a priori choice of any specific 
mechanism of creep or crack growth will be made. 

2.2. Two-dimensional model 
2.2. 1. Crack-enhanced creep 
By regarding a crack to be composed of arrays of 

dislocations, Weertman [15] derived the effect of 
cracks on the rate of creep as follows: viscous 
creep with the stress exponent n = 1, and dilute 
concentrations of non-interacting cracks: 

ie = e0 (i + 27rNa2), (I) 

where ee and eo are the creep rates for the material 
.with and without the cracks, respectively, N is the 
number of cracks per unit area and a is the crack 
half-length. 

For power-law creep (n > 1) and dilute con- 
centration of non-interacting cracks, an approxi- 
mate expression for the creep rate is [15]: 

ec = eo (1 + 27rNa2nln). (2) 

The total elastic creep strain which results over 
a given time period, can be obtained by the 
appropriate integration of Equations 1 or 2. 

2.2.2. Elastic creep by  crack growth 
The rate of elastic creep due to crack growth can 
be derived as follows: Young's modulus of elasticity 
of the plate in the direction of the applied stress 
(perpendicular to the plane of  the cracks) for 
conditions of plane stress is: 

E = Eo (1 + 21rNaZ) -1, (3) 

where E and Eo are Young's modulus of the plate 
with and without cracks, respectively. 

The elastic strain in the direction of stress (o) 
is: 

ee = o/E = (1 + 2rrXa2)a/Eo. (4) 

Differentiation of Equation 4 with respect to 
time yields the rate of creep in terms of the rate 
of crack growth (a): 

e, = 4nNad~/Eo. (5) 

The total elastic creep strain, ee, which results 
over a time period, t, can be obtained by integra- 
tion of Equation 5: 

ee = f /  47roNa(t)a(t)/Eo dt. (6) 

2.3. Three-dimensional model with 
penny-shaped cracks 

2.3. 1. E/ast/c creep by crack growth 
Young's modulus of a solid with dilute concen- 
tration of oriented penny-shaped cracks, per- 
pendicular to the plane of the cracks is [21] : 

E = E o [1 + 16(1 --vg)Na3/3] -1, (7) 

where vo is Poisson's ratio of the crack-free solid. 
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In direct analogy to the derivation of Equation 
5, the rate of elastic creep by growth of a penny- 
shaped crack, becomes: 

de = 16(1 - ug)c~a2dN/Eo. (8) 

Integration of Equation 8 over the appropriate 
time period, results in the total creep strain due to 
this mechanism. 

2. 3.2. Crack-enhanced creep 
An approximate (but possibly exact) expression is 
suggested for the crack-enhanced creep for dilute 
concentration of  non-interacting cracks. This 
suggested expression is based on the observation 
that, for the two-dimensional solid with through 
cracks, the role of the cracks in terms of the factor 
(1 + 2~rNa 2) is identical for the effective Young's 
modulus (Equation 3) as for the crack-enhanced 
creep (Equation 1). Of course, this is expected 
since the derivation for the crack-enhanced creep 
is based on the substitution of the viscosity for the 
shear modulus in the expression for the displace. 
ment [15]. Using the identical approach for the 
penny-shaped crack, with the aid of Equation 7 
(with u0 = 0.5 to maintain constant volume during 
creep) the crack-enhanced rate of viscous (linear) 
creep, becomes: 

ee = e o ( l + 4 N a  3) (n = 1). (9) 

For non-linear creep (n > 1) in direct analogy to 
Equation 2, the rate of crack-enhanced creep 
should be given approximately by: 

ee = e0 (1 + 4Na3nl/2). (10) 

3. Discussion 
A number of aspects pertaining to the separate 
phenomena of elastic creep by crack growth and 
crack-enhanced creep, in terms of the crack-growth 
behaviour in polycrystalline ceramics will be dis- 
cussed. The combined effects of these two creep 
phenomena are then discussed in terms of the 
effect of stress, grain size and other relevant 
variables on the kinetics of the creep process. 

3.1. Nature of crack formation in 
polycrystalline ceramics at 
high temperature 

Experimental evidence reported in a number of 
studies indicates that crack formation in poly- 
crystalline ceramics takes the form of intergranular 
cracking along grain boundaries oriented more or 

less perpendicularly to the applied tensile stress 
[6, 9, 11]. The total crack extension, at least 
during the initial stages of deformation, appears to 
be limited to the size of  the grain-boundary facet. 
Most likely, pores located on the grain boundary 
or at triple points, constitute the precursor for 
such grain-boundary cracks. The growth of  the 
cracks could occur by diffusional processes such as 
described by Rice, Chuang and co-workers [22-24] 
and others [25-30].  Once the crack has traversed 
the grain-boundary facet it is arrested, possibly 
due to the removal of the stress singularity, due to 
sliding on adjacent non-co-planar grain boundaries 
as discussed by Evans [31]. Thermodynamic 
considerations indicate that, at a given level of  
tensile stress, the precursor for a grain-boundary 
crack should have a minimum size, if it is to grow 
by a diffusional process. By analogy, a grain- 
boundary crack precursor of a given size will 
require a minimum value of  stress for crack growth 
to occur. Crack precursors are not expected to be 
of uniform size but to exhibit a distribution of 
sizes. For this reason, the number (or density) of 
grain-boundary facets which undergo cracking is 
expected to increase with increasing stress level. 
At stresses sufficiently low that even the largest 
crack precursor cannot undergo growth, the crack 
density will be zero. At some intermediate stress 
level at which a fraction of the crack-precursors 
will grow into grain-boundary cracks, the crack 
density achieved will be denoted, No. The maxi- 
mum crack density, iV= is achieved when all crack 
precursors develop into grain-boundary cracks, 
which is expected to correspond to approximately 
one crack per grain. As will be shown later, the 
dependence of  the crack density on stress, is 
critical for an explanation of the observed depen- 
dence of creep rate on stress and grain size. 

At a given stress level, a crack precursor of 
sufficient size to undergo growth, initially will 
exhibit a crack velocity which increases with time. 
Maximum rate of crack growth will be reached at 
some intermediate position of the crack front on 
the grain-boundary facet. As the crack approaches 
the opposite side of the facet, the velocity will 
decrease with increasing crack extension, to reach 
zero value when the crack has completely traversed 
the grain-boundary facet. This crack growth 
behaviour is depicted schematically in Fig. 1. 

For a given number of cavities per grain and a 
given amount of residual pore content, the size 
of the cavities will increase with grain size. As a 
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Figure 1 Schematic rate of crack growth 
as a function of relative position along 
grain-boundary facet, for three different 
stress values. 

direct consequence, the stress level required for 
cavity extension is expected to decrease with 
increasing grain size. Furthermore, at a given 
stress level, large-grained materials are more likely 
to exhibit grain-boundary cracking than fine- 
grained materials. These latter observations will be 
shown to be relevant to the effect of grain size on 
creep rate. For purposes of  further discussion, the 
existence of a one-to-one correspondence between 
the size of  the crack precursors and grains will be 
assumed. Clearly, for the interpretation of creep 
data for any given material, such a correspondence 
must be established by metallographic or other 
techniques. 

In polycrystalline ceramics, the size of grains 
and associated crack precursors generally is not 
uniform but will exhibit a size distribution. For 
this reason, higher concentrations of intergranular 
cracks are expected to be found in large-grained 
regions within the ceramic specimens than in 
regions with smaller grain sizes. 

3.2. Elastic c reep  by  c rack  g rowth  
Elastic creep by crack growth does not require 
the simultaneous occurrence of creep by some 
other mechanism. For instance, subcritical crack 
growth was found to exist in polycrystalline 
aluminium oxide at temperatures as low as 600 ~ C 
[32]. At this temperature, other mechanisms of 
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creep are not expected to make any significant 
contribution to the total creep deformation, so 
that elastic creep by crack growth is the dominant 
mechanism of creep. Non-linear deformation in 
heavily microcracked polycrystaUine ceramics at 
room temperature was attributed to elastic creep 
by crack growth due to a stress-corrosion mech- 
anism [331 . 

From the known values of  the rate of  crack 
growth, crack size and crack density at any instant 
in time, the corresponding rate of elastic creep can 
be calculated by means of Equation 5 or 8. In view 
of the crack-growth behaviour as a function of 
crack length shown in Fig. 1, the rate of elastic 
creep will show an initial increase, pass through 
a maximum followed by a decrease to zero as the 
cracks have grown across the grain-boundary facet. 
The creep strain as a function of time which 
results from this type of crack growth, is expected 
to be sigmoidal in nature and to reach a constant 
value when all cracks have reached their final size; 
as time approaches infinity. This time dependence 
of elastic strain is shown schematically in Fig. 2. 
The increase in elastic strain with increasing stress 
can be due to the increase in elastic strain at a 
given density of cracks as well as due to the 
increase in density of cracks with increasing stress. 

An estimate can be made of the maximum 
strain which can result from elastic creep by crack 
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growth. The maximum crack density which can 
occur will correspond to one crack per grain. For 
the two-dimensional model let it be assumed first 
than the grains have a square geometry. In this 
case, the grain size d = 2a. Furthermore, for one 
crack per grain, the crack density N = d  -~ or 
(4a2) -1. Substitution of this latter quantity into 
Equation 5 suggests that for the present example, 
Young's modulus is reduced by a factor of 2.5. 
The total creep strain due to crack growth is then 
about 1.5 times the original elastic strain which 
results from the application of the load. The grain 
geometry more likely will be hexagonal so that, 
a ~ d /4 .  This latter value will result in a maximum 
creep strain by crack growth somewhat less than 
0.5 of the original elastic strain. Similar values can 
be obtained for the penny-shaped cracks. In 
general then, depending on the shape of the grain, 
the maximum creep strain due to crack growth 
will be of the order of a small multiple of the 
original elastic strain. In typical creep experiments 
on polycrystalline ceramic materials the elastic 
strain at higher stress levels is of the order of 10 -4 , 
with a corresponding elastic creep strain of the 
same value. Total creep strains obtained over long 
durations can be of the order of a few percent. 
For this reason, if other creep mechanisms also are 
operative, elastic creep by crack growth can make 
a contribution which is a small fraction of the 
total creep strain. If, however, other creep mech- 
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Figure 2 Elastic strain due to creep by 
crack growth, as a function of time of 
loading. 

anisms are virtually absent, elastic creep by crack 
growth is the only (i.e. dominant) mechanism of 
creep. This latter condition is expected to arise 
at low temperatures, at which crack growth takes 
place by stress corrosion or by the flow of a low 
viscosity grain-boundary phase [31]. This latter 
mechanism was concluded to be responsible for 
the residual stress relaxation in a polycrystalline 
aluminium oxide at temperatures as low as 850 ~ C 
[17]. 

3.3. Crack-enhanced creep 
The form of Equations 1, 2, 9 and 10 indicates 
that the presence of the cracks causes an increase 
in the rate of creep over the creep rate in the 
absence of cracks, by a factor which depends on 
the absence or presence of crack interaction, 
the stress dependence of the creep mechanism 
and the crack geometry. It is of importance to note 
that the expressions for the effective Young's 
modulus and crack-enhanced creep for dilute 
concentrations of cracks for the two-dimensional 
model contain the identical factor (1 + 2rrNa2). 

This indicates that the relative increase in 
elastic strain due to creep by crack growth and the 
relative increase in the rate of the basic creep are 
numerically identical. As indicated earlier the 
creep strain which results from the growth of 
cracks is of the order of a multiple (2 to 4) of the 
original elastic strain attained on application of the 

165 



Z 

n ~ 

U) 

e L 
o 

INCREASING 
o-, IV 

Tr 

T 

T I  M E  ( t )  

Trr 

Figure 3 Crack-enhanced creep strain 
as a func t ion  o f  t ime o f  loading. 

load. The increase in the basic creep rate will be 
equal to the same amount, which must be con- 
sidered a significant effect. In view of the form of 
Equations 2 and 10, this effect is even larger for 
power-law creep. 

Fig. 3 shows the creep curve for crack-enhanced 
creep for a given value of stress, o. In region I, no 
cracks have developed. In region II, crack growth 
occurs, which results in a gradual increase in slope 
with an instantaneous value of slope Co(1 + 
2rrNaa 2) and curvature of e = 47reoNaa, where a 
and a represent instantaneous values. Region III 
represents the regime of crack-enhanced creep in 
which the cracks have reached their finallength,a=. 

3.4.  The  c reep  curve  
Elastic creep by crack growth and crack-enhanced 
creep are expected to occur concurrently. For this 
reason, the creep curve for a polycrystalline 
ceramic undergoing crack formation can be 
obtained by superposition of both effects, shown 
schematically in Fig. 4. A total of four creep 
regions can be identified. In region I, the material 
creeps at a rate which corresponds to the absence 
of cracks. In region II, elastic creep is dominant 
with a superimposed contribution of crack- 
enhanced creep, at a rate which corresponds to 
the instantaneous value of crack size, ai, and 
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crack density, N a. Region III represents the 
steady-state crack-enhanced creep for constant 
crack size, a~, and density, Na, Note that the 
creep strain in region III represents the sum of 
the crack-enhanced creep strain and the elastic 
creep strain achieved in Region II. Region IV, in 
which crack-coalescence occurs, includes additional 
elastic as well as crack-enhanced creep, leading to 
inevitable failure. A detailed analysis of such 
effects is beyond the scope of this study. 

Fig. 4 includes three curves corresponding to 
three levels of stress. At the lowest stress level, 
crack formation will not occur, so that the ceramic 
will exhibit stage I creep only. At the intermediate 
stress level, cracks will form by the growth of a 
fraction of the crack precursors to result in a 
crack density Na. The creep curve for the highest 
stress level corresponds to the maximum possible 
crack density, N~. 

The decrease in slope as creep progresses from 
stage II to III may explain the frequently observed 
decrease in creep rate with increasing time, as for 
instance reported by Coble [39] and Evans [34]. 
Since elastic creep by crack growth can commence 
immediately on application of the load and con- 
tinue over the total duration of creep, stage I and 
II as well as II and III are expected to merge, with- 
out clear demarcation. 
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Figure 4 Combined contribution of 
elastic creep by crack growth and 
crack-enhanced creep, to creep defor- 
mation of polycrystalline ceramic, for 
three stress values. 

3.5. Stress d e p e n d e n c e  of  s t eady-s t a t e  
creep  

The stress exponent of a creep mechanism can be 
obtained by measuring the slope of a log-log plot 
of the creep rate corresponding to a number of  
stress values. It is of interest to speculate on the 
slope of such a plot in the light of the present 
discussion. For simplicity, steady-state creep in 
stages I and III will be considered, so that the size 
and density of cracks at any stress value are fully 
developed. At sufficiently low values of  stress, at 
which no crack formation occurs, the slope of 
the log e- log  o curve will correspond to the stress 
exponent of the underlying creep mechanism. At 
higher stresses, the change in slope will depend 
critically on the distribution function of  the size 
of the precursors from which the grain-boundary 
cracks form, as shown schematically in Fig. 5. 
For crack precursors of identical size, the log e -  
log a plot is expected to show a discontinuity at 
the minimum level of  stress required for crack 
growth to occur. The magntiude of this discon- 
tinuity is equal to the factor (1 + 2rrN=a2). Both 
above and below this discontinuity, the slopes of 
the log e- log a plot will be identical, correspond- 
ing to the stress exponent of  the basic mechanism 
of creep. 

For a distribution of sizes of  crack precursors, 

as discussed earlier, the crack density becomes a 
function of the applied stress. In this case, rather 
than showing a discontinuity, the log e- log o plot 
is expected to exhibit a more continuous sigmoidal 
behaviour as indicated in Fig. 5. This latter situation 
is expected to be the case in practice. Experimental 
data generally show an increase in slope with 
increasing stress [6-11].  The present writers, 
however, are not aware of  experimental data for 
decrease in slope with increasing stress at the 
highest values of stress, as suggested by the present 
discussion. Quite possibly, in practice, this effect 
is hidden by the presence of stage IV creep. 
Nevertheless, it could be observed for materials in 
which crack coalescence, for whatever reason, is 
suppressed. 

A numerical value for the slope, i.e. the apparent 
stress exponent of the log e- log o plot, can be 
derived. Let it be assumed, quite arbitrarily, that 
the density of  cracks in steady-state stage III 
creep, as a function of stress, can be expressed by 
a Weibull distribution of the form: 

N/No = 1 -- exp [-- (oflro)m], ( l l )  

where No, Oo and m are constants. 
Let us take the condition that the stress value 

(o) is such that: 
(o/oo) m < 1, (12) 
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Figure 5 Stress dependence of rate of 
steady-state crack-enhanced creep of 
polycrystalline ceramic, for uniform and 
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log (STRESS) 

which yields: 

N/No  "~ (O/ao) m. (13) 

The incremental increase in creep rate in stage 
III creep over stage I creep for viscous or power- 
law creep, from Equations 1 and 2 can be written: 

ec - eo = 21reoNa 2n i/2. (14) 

Setting eo in the right-hand side of Equation 
14 equal to e0 = A a "  and taking logarithms 
yields: 

log (ee - eo) = (n + m) log o 

+ log (2zrANoa-oma2n'/Z). (15) 

This result (Equation 15) shows that the slope 
of the plot of the log of the incremental increase 
in creep rate against log o has a value equal to 
n + m. In other words, the stress exponent observed 
in steady-state creep is a function of both the 
stress exponent of the creep mechanism as well 
as that of the crack distribution. 

For other types of distribution functions 
undoubtedly other relations for the apparent 
stress exponent can be obtained. Qualitatively, 
however, regardless of  the formulation used, it is 
expected that such stress exponents will be found 
to depend on the density of  cracks as a function 
of stress. Critical to note is that the formation of 
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cracks during creep can cause a ceramic to exhibit 
power-law creep, even when the underlying creep 
mechanism is of  a viscous (linear) nature. 

3.6.  Ef fec t  o f  grain size on rate  of  c reep  
The grain-size exponent for the dominant mech- 
anism of creep can be obtained from the slope of 
the log-log plot of  the creep rate at a given value 
of stress, against grain size. For pure Nabarro-  
Herring or Coble creep, the grain-size exponents 
are -- 2 and -- 3, respectively. The effect of cracks 
on the apparent grain-size exponent will be 
examined. For simplicity, it will be assumed that 
the ratio of the size of  the precursor crack to the 
size of  the grains is a constant for either a uniform 
grain size or a distribution of grain sizes. In this 
manner, for any given stress level, the minimum 
size of precursor required for grain-boundary 
cracks to form, can be expressed directly in terms 
of the grain size. As stated earlier, the exact 
relationship between precursor size and grain size, 
for any given material must be established by 
metallographic means. Also, the discussion will 
focus on steady-state crack-enhanced creep, i.e. 
stages I and III only. 

Fig. 6 indicates schematically the effect of  the 
presence of the cracks on the dependence of 
creep rate on grain size. For grain sizes and 
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associated crack precursors which are too small 
for crack formation to occur, the creep rate as a 
function of grain size is depicted in the left-hand 
part of the diagram, denoted by N = 0. Let it first 
be assumed that the grain size (and precursor size) 
is uniform. At any given stress level, this impfies 
that grain-boundary cracking will occur at and 
above a critical value of grain size. On the log-  
log plot of creep rate against grain size, this will 
result in a discontinuity equal to the factor (1 + 
2rrN~a~) as indicated in Fig. 6. Above and below 
this discontinuity the slope of the log e- log  d plot 
should be identical and equal to the grain-size 
exponent of the basic creep mechanism. The other 
two curves in Fig. 6 indicate the grain-size depen- 
dence of the creep rate for narrow and broad 
grain-size distributions. The narrow grain-s~e dis- 
tribution shows an increase in creep rate with 
increasing grain size, near the value of critical 
size for the uniform grain size. For the broad 
grain-size distribution, the creep rate decreases 
monotonically with increasing grain size, however, 
with a slope near the value of critical grain size, 
less than the grain-size exponent for the under- 
lying mechanism of creep. 

A value for the apparent grain-size exponent as 
affected by the presence of cracks can be derived 
in a manner analogous to the derivation for the 
apparent stress exponent, obtained in Section 3.5. 

Again, let it be assumed that the density of 
cracks can be expressed by a Weibull function: 

N/No = 1 - - exp  [--(d/do)m], (16) 

where No and do are constants. Assuming that 

(d/do) m < 1 (17) 

yields: 

N/No ~ (d/do) m. (18) 

The rate of crack-enhanced creep (Equation 1) 
can be written in terms of the grain size as: 

ec = A'db(1 + 27rNa2), (19) 

where A'  is a constant which depends on stress and 
temperature. It will be recalled that for intergranu- 
lar cracks, the crack dimension is a function of the 
grain size. Assuming the grain shape to be hexag- 
onal, the crack size a ~ (t/4, which upon sub- 
stitution into Equation 19 yields: 

ec = A'db(1 + ~Nd2/8). (20) 

Again it is convenient to consider the incre- 
mental increase in creep rate due to the cracks, 
which with the aid of Equation 18 can be 
expressed: 

ee--  eo = ~rA'Nod(b+m+z)/8d~ n. (21) 

Taking logarithms yields: 

log(ee - -eo)  = ( b + r n + X )  logd 

+ log (~A 'Xo/Sd~n). (22) 
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Equation 22 shows that a plot of the log of 
the incremental increase in creep rate due to the 
cracks against the logarithm of the grain size, will 
suggest an apparent grain-size exponent equal to 
b + m + 2 .  

It is suggested that this effect could offer an 
explanation for the observation of Burton et al. 
[35] on the grain-size dependence of the creep 
behaviour of polycrystalline UO2. 

The effect of non-uniformity in grain-size 
distribution on creep and creep-fracture behaviour 
has received recent attention. Raj and Ghosh [36] 
and Schneibel et al. [37] analysed the creep 
behaviour of polycrystalline materials with a 
distribution in grain sizes. Owing to the higher 
creep rate in the fine-grained material, the coarse 
grains, due to the stress transfer, became subjected 
to a higher stress value, which could make them 
undergo power-law creep. Evans [38] attributed 
the effect of stress transfer to the premature 
failure of polycrystalline ceramics in creep fracture 
due to the existence of clusters of coarse-grained 
material within a fine-grained matrix. It is con- 
ceivable that the presence of cracks in the coarse- 
grained material can modify the above effects. At 
the proper combinations of stress, grain-size dis- 
tributions and size of crack precursors, the coarse- 
grained material due to the combined effects of 
stress-enhanced creep, as discussed above, and 
elastic creep, can exhibit creep rates well above 
those for the fine-grained material. If so, the 
stress transfer will occur from the coarse to the 
fine grains with corresponding changes in creep 
kinetics and creep-fracture behaviour. Space con- 
siderations require deferring detailed analysis of 
these effects to a future study. 

3.7. Activation energy 
The presence of the cracks is also expected to have 
an effect on the value of the activation energy 
which can be inferred from a plot of the creep 
rate at a given stress, against the reciprocal of the 
absolute temperature. For stage I and III steady- 
state creep, in which crack growth is absent, the 
activation energy should be identical to the 
activation energy for the creep rate, Co, for the 
underlying mechanism of creep. For stage II 
creep, however, the observed rate of creep is 
the sum of the instantaneous values of the elastic 
creep rate due to crack growth and the crack- 
enhanced creep. In this case, the observed activation 
energy is expected to be a function of the 

170 

activation energy for the basic creep mechanism 
as well as the activation energy for crack growth. 
These latter two quantities are not necessarily 
equal. In particular, large differences could be 
found in these values, if the basic creep mech- 
anism were controlled by volume diffusion as in 
the case of Nabarro-Herring creep, with crack 
growth governed by surface and grain-boundary 
diffusion. 

The effect of such differences on the creep 
kinetics is shown schematically in Fig. 7. The 
lower and upper curves correspond to stage I and 
III creep for the absence of cracks (N = 0) and a 
fully developed crack system ( N = N o ,  a = a=), 
respectively. These lines have identical slopes 
corresponding to the activation energy for the 
creep rate, Co. The separate contribution of elastic 
creep by crack growth and the crack-enhanced 
creep in stage II, for an instantaneous value of 
crack size (ai) are indicated by the curves drawn 
intermediate to the stages I and III creep. For 
purposes of illustration, the creep rates for these 
two separate mechanisms were taken as approxi- 
mately equal. The curve for the crack-enhanced 
creep ee(Na, ai) is parallel to the curves for stages 
I and III creep. The curve for the elastic creep by 
crack growth, however, exhibits a lower slope 
because of the lower value for the activation 
energy for crack growth than the corresponding 
value for the creep rate, ~o. Fig. 7 also includes 
the sum of the stage II elastic and crack-enhanced 
creep. As shown, the slope of this curve is no 
longer constant, but has a lower value of activation 
energy at the lower temperature and a higher value 
at the higher temperatures. Furthermore, as creep 
advances, a decrease in activation energy should 
occur in going from stage I to stage II, followed by 
an increase as creep advances from stage II to stage 
III creep. This latter effect possibly may offer a n  
explanation for the findings of Crosby and Evans 
[9] that in polycrystalline Ni-doped A1203, the 
presence of the cracks causes an increase in activa- 
tion energy. 

3.8. R e c o m m e n d a t i o n s  
It can be concluded that cracks can have a signifi- 
cant effect on the creep behaviour of polycrystal- 
line ceramics. An analysis of this effect and the 
interpretation of creep data for any given material, 
will require the generation of experimental data 
for the crack density and distribution of crack 
sizes. A measurement of the change in elastic 
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Figure 7 Arrhenius plot of rate of 
creep in regions I, II and III; indicat- 
ing the effect of crack growth on the 
apparent activation energy. 

properties as creep progresses should prove to be 
most helpful, as well. At higher temperatures, such 
a measurement on experimental grounds may 
prove to be difficult. As an alternative, it may 
suffice to measure the elastic properties of the 
samples before and after the creep experiment. 
A comparison of the stress-strain curve on loading 
and unloading, could give a valuable indication of 
the formation of  the cracks and their role during 
creep. A separate measurement of elastic properties 
at room temperature by an appropriate method 
before and after the measurement of creep at 
higher temperatures should give accurate numerical 
data. Such measurements may prove too complex 
in specimens subjected to creep in bending, a 
method frequently employed to examine tensile 
creep behaviour in ceramics. Because of the non- 
uniform distribution of stress under those con- 
ditions, the cracks will not be distributed uniformly 
throughout the specimen, but are more likely to 
be found in the regions of the specimen at or near 
the maximum values of tensile stress. Inevitably, 
this causes the creation of spatially non-uniformly 
distributed elastic behaviour and an associated 
shift in the position of the neutral axis towards 
the regions in the specimen subjected to com- 
pression. Because of this latter effect, the quan- 

titative interpretation of creep data in bending may 
prove to be more complex than in pure tension. 
Finite element modelling of  such creep behaviour 
based on spatially and time-dependent elastic 
behaviour could be of value in the interpretation 
of the experimental data. If  the thoughts expressed 
in this paper are found to be of merit, a structural 
analysis of the cracks formed should be a vital 
part of any study of the creep behaviour of poly- 
crystalline ceramic materials. 
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